jueves, 16 de julio de 2009

tex 4

3 CAJAS EMPACADAS EN UNA CAJA

Los cambios realizados en este montaje son de la misma naturaleza que
los expuestos en el tex 1y los demás. Debemos tener en cuenta la disposición de las enteadas y salidas y los elementos requeridos para tal fin.


Configuración de entradas:
I1= boton pulsador NO –S1 =start
I2= boton pulsador NO –S2= stop
I3= sensor sensor inductivo 24 vDC (A1)
I4= boton pulsador NO –S3= (A0)
I5= boton pulsador NO –S4 = (B1)
I6= boton pulsador NO –S5 = (B0)
Salidas: -KA1, -KA2, -KA3, -KA4;

corresponden a las bobinas de los relés electromagnéticos que son tomados como electroválvulas de control.
Atreves de los contactos (6-7) de los relés activan los contactores
-KM1, -KM2, -KM3, -KM4 que son los actuadores (cilindros doble efecto del tex)
Materiales usados:

1 fuente a 24vDC y 110vAC
1 disyuntor de 3.5 A de siemens
4 reles electromagnéticos a 24Vdc
4 contactores 110VAC siemens (50/60Hz)
5 pulsadores NO
1 sensore inductivos 24vDC TYPE MLD12-3004 (NO) telemecanique
PLC TWIDO TWDLCAE40DRF TELEMECANIQUE
Cable 18 y 12 AWG

TEX 3

ESTAMPADORA

En primer lugar debo decir que en el ambiente de electricidad no hay elementos neumáticos para el control de fluidos, razón por la cual usamos en nuestros montajes otros componentes eléctricos para simular el funcionamiento de los cilindros neumáticos; estos componentes los menciono a continuación.

Las válvulas 4/2 de control de los cilindros las remplazamos por los relés
electromagnéticos –KA1, –KA3 (A† and B†); –KA2, – KA4 (B-and A-).
estos relés en la práctica activan los contactores –KM1, -KM3(A† and B†) Y –KM2, –KM4 (B-and A-).


Podemos observar las referencias anteriores el plano de conexión llamado tex 3 estampadora.

MATERIALES USADO:

7pulsadores NO
1 pulsador NC
2 sensores inductivos 24vDC TYPE MLD12-3004 (NO)
4 Contactores 110vAC
4 Reles electromagnéticos.
PLC TWIDO TWDLCAE40DRF (TELEMECANIQUE)
1 disyuntor 3.2A y 10A
1Fuente 24vDC
Cable AWG

TEX 2

CLASIFICADOR DE CAJAS DE BOTAS Y ZAPATOS

Al igual que en el tex, los componentes electroneomaticos son remplazados por relés electromagnéticos que representan las electroválvulas, y contactores que representan los actuadores neumáticos (cilindros doble efecto).
Las condiciones del proceso se encuentran en el marco teórico del tex 2 tres cilindros A, B, C, que esta adjunto.


En este caso se hace referencia un poco a las entradas al autómata programable.
I2 =corresponde al stop que lo tomamos como un pulsador NO identificado – S2 para de emergencia del sistema.
I3=corresponde al pulsador NO –S3 que lo tomamos como sensor Z1al que hace referencia el marco teórico.


I4 =Es la entrada del sensor inductivo TYPE MLD12-3004 NO TELEMECANIQUE; quien determina la salida de A hasta a/2 y desde luego B†; claro cuando la caja censada sea zapatos. I5= corresponde al pulsador NO identificado –S4 que es presencia (start)
I6= corresponde al pulsador NO identificado –S6corresponde al final de carrera b1. (B-).
I7= corresponde al pulsador NO identificado –S7 botas
I8= corresponde al pulsador NO identificado –S8(A† total and C†)
I9= corresponde al pulsador NO identificado –S9 (C-).
Las salidas están representadas por los relés –KA1, -KA2, KA3
que a su vez activan los contactores –KM1, –KM2, –KM3.

MATERIALES USADOS

8pulsadores NO
1 sensores inductivos 24vDC TYPE MLD12-3004 (NO)
3 Contactores 110vAC 3 Reles electromagnéticos.
PLC TWIDO TWDLCAE40DRF (TELEMECANIQUE)
1 disyuntor 3.2A y 10A 1Fuente 24vDC
Cable 18 Y 12 AWG

TEX 1

SISTEMA DE CLASIFICACION Y EMPAQUE DE PRODUCTOS DE CALZADO

Marco teórico

Un sistema de clasificación y empaque de productos de calzado es capaz de diferenciar entre zapatos y botas y ejecutar la primera operación de empaque de los mismos, según el plano de situación que se observa en la figura 1. La clasificación del producto se hace de acuerdo con dos sensores electrónicos. Cuando a través del dispositivo de alimentación llega una caja de zapatos, deberá activarse un sensor óptico Zl. Si es caja de botas, deberán encenderse al mismo tiempo dos sensores, Zl y Bl, siendo este último de naturaleza inductiva. Para asegurar el buen posicionamiento de la caja en el dispositivo de alimentación, se cuenta con un detector de rodillo electromecánico en la base del mismo. Después de eso, el cilindro A expulsará, con velocidad regulada, el producto hacia la zona de empaque, donde existe un cilindro B. Si la caja identificada fue de zapatos, el cilindro A recorrerá sólo la mitad de su carrera y regresará de manera inmediata a su posición original. La mitad de carrera de este cilindro A deberá ser detectada a través de un sensor capacitivo. Los desplazamientos de los cilindros se deben de realizar en el diagrama espacio-faseSi el producto identificado es de botas, el cilindro A deberá cumplir toda su carrera para vaciar la caja hacia un recipiente ubicado en el suelo.

El cilindro regresará en forma inmediata a su posición de origen.
Las posiciones finales de ambos cilindros deberán detectarse me-diante rodillos electromecánicos.El sistema, además de funcionar en forma automática en todo su ciclo, no dependerá de ningún operador, sólo del sistema de alimentación.
En el marco teórico de la de la actividad para recoger evidencias 1.1 plantea un sistema electro-neumático controlado por PLC para la clasificación y empaque de productos de calzado (ZAPATOS y BOTAS).


Los actuadores son cilindros doble efecto(A Y B) los cuales están controlados por válvulas 5/2 y sus respectivos finales de carrera. Para dar funcionalidad al proceso descrito en marco teórico del
tex 1
fue necesario usar relés electromagnéticos a 24vDC que representan las electroválvulas. contactores a 110vAC (50/60 Hz) Siemens que representan los cilindros doble efcto; los pulsadores cumplen con el funcionamiento de los sensores (finales de carrera y los sensores Z1 y B1 del marco teórico).
Descripción de los componentes de entrada:
I1= boton pulsador NO –S1 =start
I2= boton pulsador NO –S2 = stop
I3= sensor inductivo 24 vDC zapatos (Z1)
I4= boton pulsador NO –S3 =A/2 (A+ hasta la mitad)
I5= boton pulsador NO –S4= A0 (B+)
I6= boton pulsador NO –S5= final de carrera (B1)
I7= sensor inductive 24 vDC (B2) botas
I8= A1 boton pulsador NO –S6 –
Components de salida -KA1, -KA2, -KA3, -KA3, son las bobinas de los relés que representan las electroválvulas. –KM1, -KM2, -KM3, -KM4 son las bobinas de los contactores que representan
los cilindros doble efecto.
Materiales usados:
1 fuente a 24vDC y 110vAC
1 disyuntor de 3.5 A de siemens
4 reles electromagnéticos a 24Vdc
4 contactores 110VAC siemens
4 pulsadores NO
2 sensores inductivos 24vDC TYPE MLD12-3004 (NO) telemecanique
PLC TWIDO TWDLCAE40DRF TELEMECANIQUE

jueves, 6 de noviembre de 2008

SISTEMAZELIOSOFT

SISTEMA LIFO EN SELIOSOFT
SISTEMA FIFO EN SELIOSOFT

miércoles, 10 de septiembre de 2008

miércoles, 13 de agosto de 2008

PREGUNTA N7

elementos que conforman el circuito alimentador de un motor
grafica para analizar los eelementos que conforma el circuito alimentador de un motor





ELEMENTO DEL CIRCUITO DERIVADO DE UN MOTOR






DESCRIPCION DE DIAGRAMA UNIFILAR DE MOTORES Y CONTACTOR
en la grafica de diagrama unificar de motores aparecen los diferentes elementos que conforman el circuito alimentador. Describa los elementos que lo integran y su funcionamiento.
PROTECCIÓN DEL ALIMENTADOR
La protección del alimentador se puede hacer por medio de fusibles, breckesr, interruptores automáticos (termo magnético o electromagnético) u otro tipo de interruptores pero se debe calcular según sea la corriente.
FORMAS DE DESCONEXION:
Este medio puede estar compuesto por un seccionados ya que permite controlar la alimentación al circuito.
PROTECCION DEL CIRCUITO DERIVADO:
la protección puede hacerse, en los casos más simples por medio de fusibles, o por medio de interruptores automáticos. Ésta protección tiene como objetivo proteger a los conductores del circuito derivado contra corto circuito y debe tener una capacidad tal que permita el arranque del motor sin que se desconecte el circuito.
BLOQUEO TERMICOTERMICO:
En algunos motores el térmico viene incluido al motor; esto funciona de manera que previene que el motor se sobrecargue de corriente, es decir que en caso de que allá una sobrecarga el fusible térmico se queme previniendo así daños mas graves al motor.
CONDUCTORES DEL CIRCUITO:
Conductores son todos aquellos materiales o elementos que permiten que los atraviese el flujo de la corriente o de cargas eléctricas en movimiento, en este caso permite el flujo por todo el circuito para que se pueda realizar un trabajo, el cual es el de encender y controlar un motor.
CONTROLADOR:
Start-stop; me permite apagar o encender el motor.
CICUITO DE MANDO:
El circuito de mando en este caso seria un contactar.
EL CONTACTOR.
DEFINICIÓN Y GENERALIDADES
.Podemos definir un contactor como un aparato mecánico de conexión y desconexión eléctrica, accionado por cualquier forma de energía, menos manual, capaz de establecer, soportar e interrumpir corrientes en condiciones normales del circuito, incluso las de sobrecarga.Las energías utilizadas para accionar un contactor pueden ser muy diversas: mecánicas, magnéticas, neumáticas, fluídricas, etc.. Los contactores corrientemente utilizados en la industria son accionados mediante la energía magnética proporcionada por una bobina, y a ellos nos referimos seguidamente.característica importante de un contactor será la tensión a aplicar a la bobina de accionamiento, así como su intensidad ó potencia. Según sea el fabricante, dispondremos de una extensa gama de tensiones de accionamiento, tanto en continua como en alterna siendo las más comúnmente utilizadas, 24, 48, 220, y 380. La intensidad y potencia de la bobina, naturalmente dependen del tamaño del contador.
FUNCIONAMIENTO DEL CONTACTOR.
Cuando la bobina se energiza genera un campo magnético intenso, de manera que el núcleo atrae a la armadura, con un movimiento muy rápido. Con este movimiento todos los contactos del contactor, principales y auxiliares, cambian inmediatamente y de forma solidaria de estado.Existen dos consideraciones que debemos tener en cuenta en cuanto a las características de los contactores:· Poder de cierre: Valor de la corriente independientemente de la tensión, que un contactor puede establecer en forma satisfactoria y sin peligro que sus contactos se suelden.· Poder de corte: Valor de la corriente que el contactor puede cortar, sin riesgo de daño de los contactos y de los aislantes de la cámara apagachispas. La corriente es más débil en cuanto más grande es la tensión.Para que los contactos vuelvan a su posición anterior es necesario desenergizar la bobina. Durante esta desenergización o desconexión de la bobina (carga inductiva) se producen sobre-tensiones de alta frecuencia, que pueden producir interferencias en los aparatos electrónicos.